Exercise 27

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every number in its domain. State the domain.

$$
Q(x)=\frac{\sqrt[3]{x-2}}{x^{3}-2}
$$

Solution

The numerator is $\sqrt[3]{x-2}$, a root function, which is continuous according to Theorem 7. The denominator is $x^{3}-2$, a polynomial, which is continuous according to Theorem 7. $Q(x)$ is the ratio of these functions, which according to Theorem 4 is also continuous wherever the denominator is not zero.

$$
\begin{aligned}
x^{3}-2 & \neq 0 \\
x^{3} & \neq 2 \\
\sqrt[3]{x^{3}} & \neq \sqrt[3]{2} \\
x & \neq \sqrt[3]{2}
\end{aligned}
$$

Therefore, the domain is

$$
(-\infty, \sqrt[3]{2}) \cup(\sqrt[3]{2}, \infty)
$$

